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We coupled the lattice Boltzmann method with enhanced collisions for hydro-
dynamics with a model for the anisotropic liquid/solid phase transition. The
model is based on a simple reaction model. As a test we have performed
calculations for dendritic growth of a crystal into an undercooled melt.
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1. INTRODUCTION

Crystal growth from melt plays an important role in industrial processes as
well as in nature. The growth of large single crystals of high quality for
opto-electronic purposes is an industrial process of major importance.
Often, the macroscopic growth is strongly influenced by microscopic pro-
cesses. For instance, the growth of twinned crystals, which do not have the
proper opto-electronic properties as a single crystal, might be caused by
defects on atomistic scale. It is therefore of great interest to couple effects
on the microscopic scale with those on the macroscopic.

When a small seed crystal is placed or nucleates in an undercooled
melt, the solid phase grows rapidly. Directional anisotropies of surface and
kinetic energies, due, e.g., to the underlying molecular geometry, result in
preferred growth directions and the development of dendrites. (1) Experi-
ments show that the growth velocities and the structure depend strongly on
the angle between crystal and gravity direction. (2) Nevertheless, theoretical



and numerical studies focused for a long time only on cases without con-
vection. Only recently forced flow in refs. 3 and 4 or thermal flow in ref. 5
has been included in the calculations based on differential equations in
a continuum framework. The sharp interface limit for the phase-field
model with convection has been very recently invented by Anderson et al. (6)

In this paper we present a different approach to the problem: we use the
lattice Boltzmann method for the hydrodynamics extended by a model for
the phase transition, which is based on an analogy to chemical reactions.
The aim is to calculate both the phase transition and the hydrodynamics on
a mesoscopic scale.

2. HYDRODYNAMICS

In the late 1980’s the first lattice fluid models for hydrodynamics were
introduced. (7) They mimic the hydrodynamics by means of fictitious quasi-
particles hopping from one lattice site rg to the next and undergoing colli-
sions at each site. Here we concentrate on the description of the lattice
Boltzmann method with enhanced collisions on a face-centred hypercubic
(FCHC) lattice as introduced by Higuera et al. (8) In the four-dimensional
FCHC lattice the motion of the lattice fluid particles is restricted to 24
directions, which define the links between a node and its adjacent ones
(Fig. 1). Therefore, the lattice fluid consists of 24 quasi-particles, defined at
a node rFg with a distribution function Ni(rFg, tg). The index i labels the
direction, the speed of a particle is cFi with |cFi |=`2 Dt, where Dt is the
discrete timestep. We set the timestep to unity (Dt=1) so that each moving
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Fig. 1. Unit cell of the lattice Boltzmann model on the face-centred hypercubic (FCHC)
lattice. The links in x, y, and z direction drawn in thick lines split into two links for positive
and negative direction of the fourth dimension, respectively.
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quasi-particle is hopping to the next node in a timestep. In addition to the
moving quasi-particles we have particles of zero speed (rest particles) to
ensure the Gallilean invariance. (9) We denote the density of rest particles
with d0 and that of the moving particles with d, so that the total (average)
density of the lattice fluid per node is rg=d0+24d. The local density is
given by

rg(rFg, tg)=C
i
Ni(rFg, tg) (1)

and the velocity of the lattice fluid by

uFg(rFg, tg)=
1
rg C

i
cFiNi(rFg, tg) (2)

The particle distributions evolve via a discretized and simplified Boltzmann
equation:

Ni(rFg+cFi, tg+1)=Ni(rFg, tg)+C
j
Aij[Nj(rFg, tg)−N

eq
j (rFg, tg)]+Fi (3)

All entities like density, velocity, forces are measured in lattice units (l.u.).
A physical problem is defined by a set of dimensionless numbers like, e.g.,
Reynolds number or Grashof number, which read in terms of the lattice
Boltzmann model Re=ug0N/ng and Gr=b DTgN3/n2g, respectively. Here,
N is the number of nodes for the characteristic length, ug0 and DTg are the
characteristic velocity and the characteristic temperature difference in
lattice units, respectively, b is a parameter, which enters the buoyancy force
FF B=bTgnFg, where nFg is a unit vector in the direction of the gravity. This
force enters Eq. (3). Neqi is the local equilibrium distribution, Aij the colli-
sion matrix, and Fi is the component of an additional force FF g to be
detailed later. The equilibrium distribution is

Neqi =d+
rg

24
[2(ci)a u

g
a+3(ci)a (ci)b u

g
au

g
b−(u

g)2] (4)

for the moving particles and

Neqi =d0−
rgug2

2
(5)

for the rest particles, (10) which ensures that we obtain the Navier–Stokes
equations in the continuum limit. The collision matrix is symmetric and has
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a leading eigenvalue l=−1/y, (11) where y is the relaxation time of the
lattice fluid, which is related to the viscosity ng:

y=3ng+
1
2 (6)

The FCHC lattice has in total four dimensions so that three can be used to
obtain the real velocity components (ugx , u

g
y , u

g
z ) and the fourth dimension

can be used to solve the transport equation for a scalar. (7, 12) If we do not
allow any variation in the fourth direction, the Navier–Stokes equation for
the velocity component ug4 reads:

“ug4
“t
+(uFg ·N) ug4 − nN

2ug4=0 (7)

This is the transport equation for a scalar u4 with unit Prandtl/Schmidt
number. A non-unit Prandtl/Schmidt number can be achieved with a modi-
fication of the collision matrix by introducing a second relaxation time
y2=3Dg+12 , where Dg is the diffusivity of the scalar in l.u. (13, 14) In this
paper we treat the temperature Tg as a scalar, i.e., we indentify ug4 with Tg.
Other authors use a thermal LBM, (15, 16) where the total energy is computed,
but besides a larger computational cost these schemes are numerically
stable only in a very limited parameter space.

3. PHASE TRANSITION

In the framework of continuum models phase-field methods have
become very popular. They are based on the Landau–Ginzberg theory and
were introduced by Caginalp in 1985. (17) Later they were extended to ani-
sotropic growth. (18, 19) Recently they are used intensively for the calculation
of the dendrite growth. (3, 4, 20, 21) The solid and liquid phase is distinguished
by a phase field f (solid: f=−1, liquid: f=+1), whose time evolution is
given by a Landau–Ginzburg-like differential equation. This equation is
derived from a free energy with a double-well potential and a second order
bending term. Because the height of the double-well potential is normally
hard to define by physical data, the width d of the transition region is
fixed and a parameter of the computation. (22) The profile of the phase-
field is given by f=tanh(d/2d) (d: coordinate normal to the interface,
6d: thickness of the interface, where −0.1 [ f [ 0.1), the equation for the
phase-field reads:

“fs

“t
=mkC 5N2fs−

fs(1−fs)(1−2fs)
d2
6+mk(Tc−T)

fs(1−fs)
d

(8)
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For convenience we have introduced the solid fraction fs:

fs=1/2(1−f) (9)

C is the Gibbs–Thomson coefficient and mk a kinetic coefficient.
In the discrete lattice model we also use the phase-field as an order

parameter but define its evolution by a simple rate equation:

f(rg, tg)=f(rg, tg−1)+R(rg, tg) (10)

This equation is designed to describe the dynamics of the phase transition
on a mesoscopic time scale. In most real cases, the time scale for crys-
talization/melting is much faster than the time scale for thermal diffusion
or hydrodynamics, which were introduced in the previous section via the
relaxation times y and y2. Since melting/solidification is an activated
process, we postulate the following chemical expression for the reaction
term R(rg, tg):

R(rg, tg)=fsQ lK sQ l(rg, tg) [1−f(rg, tg−1)]

−flQ sK lQ s(rg, tg) [1+f(rg, tg−1)] (11)

where fsQ l, flQ s are frequency factors, basically the inverse time scale for
solidification/melting respectively, and K sQ l, K lQ s are switch functions
controlling the onset of solidification/melting around the critical tempera-
ture Tc. Their specific form is (TŒ(rg, tg)=Tg(rg, tg)−Tc):

K sQ l(rg, tg)=
1
2 (1+tanh{(TŒ(rg, tg)−Ts)/Tw}) (12)

K lQ s(rg, tg)=
1
2 (1− tanh{(TŒ(rg, tg)+Ts)/Tw}) (13)

where Tw controls the energy range of the transition and Ts defines two
distinct activation energies for melting and solidification. The tanh is a
smooth function to connect the situation of an infinite high to an infinite
small barrier for the transition. This corresponds to the picture in a conti-
nuum phase-field model, where the double-well potential is distorted by the
temperature gradient in the system and the barrier for the transition in one
direction is increasing while the one in the other direction is decreasing.

In order to allow the phase transition only at the interface, we modify
the switch functions in such a way as to inhibit solidification in the solid
phase and melting in the liquid phase:

K sQ l(rg, tg)QK sQ l(rg, tg)
1
8 C
i
{12 gi(1+f(rFg+cF

−

i))}
2 (14)

K lQ s(rg, tg)QK lQ s(rg, tg)
1
8 C
i
{12 gi(1−f(rFg+cF

−

i))}
2 (15)
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where cF −i is the projection of cFi on the physical space, i.e., in two dimen-
sions we have two horizontal and vertical directions with |cF −i |=1 and four
diagonal directions with |cF −i |=`2. In order to normalize the contributions
to the sum, we introduced the scaling gi, which takes the value 1 for
horizontal and vertical directions and 1/`2 for diagonal directions.
Because the sum runs over all neighbors the rate R depends now on the
phase-field at the surrounding nodes. The square of the curly brackets
suppresses a steadily increasing width of the transition region for a moving
solidification plane. This corresponds to the approach of a fixed width of
the transition region in the continuum phase-field model. (3, 20) As we will see
in a moment, using the Eqs. (14) and (15) recovers the continuum phase-
field equation in the continuum limit.

The corresponding macrodynamical equation is derived in the same
manner as for the original lattice Boltzmann model. (7) We assume that f is
changing on a spatial scale e−1 and we introduce the time and space scale
t1=etg and r1=erg, respectively. Furthermore, we denote the time and
space derivative with “t and “r, respectively. Since we have only one time
and length scale for the phase transition we can make the substitution
“t Q e“t1 and “r Q e“r1 . We assume fsQ l — flQ s=f and Ts=0 and use the
fact that in the vicinity of the phase transition (TŒ/Tw < 1) tanh is a linear
function in its argument. The equation for the phase-field in the continuum
space reads:

f(r, t+e)=f(r, t)+fKsQ l(r, t)[1−f(r, t)]−fK lQ s(r, t)[1+f(r, t)]
(16)

For convenience, we introduce the solid fraction fs=(1−f)/2. We then
get the equation:

fs(r, t+e)−fs(r, t)=
f
2
C
i
gi 3(1−TŒ/Tw)(1−fs)

1
8
f2s (r+ecF

−

i, t)

−(1+TŒ/Tw) fs
1
8
[1−fs(r+ecF

−

i, t)]
24 (17)

We expand fs in time and space as fs(r, t+e)=fs(r, t)+e“t1fs+O(e2) and
fs(r+ecF

−

i, t)=fs(r, t)+ecF
−

i“r1
fs+O(e2). Up to first order in e we get:

“tfs=
f
2
3(1−TŒ/Tw)(1−fs) 5f2s+2fse

1
8
C
i
gic

−

ia“r1, a
fs6

−(1+TŒ/Tw) fs 51−2fs+f2s+2(1−fs) e
1
8
C
i
gic

−

ia“r1, a
fs64 (18)
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Because ; i giciaŒ“r1, afs is zero, we obtain Eq. (8) without the term of the
bending energy of the phase-field:

“tfs=
f
2
fs(1−fs)(2fs−1)−

f
2
fs(1−fs)

TŒ
Tw

(19)

We can find the relations Tw=C/d and f=2mkTw/d, where C is the Gibbs–
Thomson coefficient, mk a kinetic coefficient and d the width of the tran-
sition region of the phase field. If Ts ] 0 we get an additional term
Ts/Twffs(1−fs)(1−2fs). In this case we also should expand the tanh like
tanh(x) % x/(1+x2/2). Assuming TŒ° Ts we expand

tanh{(TŒ(rg, tg)±Ts)/Tw} %
TŒ(rg, tg)−Ts

Tw11+
1
2
T2s
T2w
2

Performing the continuum limit with this expression we obtain the
following relation for the Gibbs–Thomson coefficient:

C=d 5Tw 11+
1
2
T2s
T2w
2−Ts6 (20)

This relation holds only if C is measured at a point where TŒ is small
compared to Tw and Ts.

We now consider the second order terms. Again we assume Ts=0 and
expand the tanh linearly in its argument. Then the expansion yields:

2e2“t2fs=
1
8 e
2 C
i
{(1−2fs)(dia“r1, afs)

2+fs(1−fs) diadib“r1, a“r1, bfs

+TŒ/Tw(−(dia“r1, afs)
2+fs(fs−1) diadib“1r, a“r1, bfs)} (21)

Here we introduced a second time scale t2 and the multi-scale formalism
for the time derivative reads now: “t Q e“t1+e

2
“t2 . With the relations

; i gidiadib“r1, a“r1, b=4N
2fs and ; i gi(dia“r1, afs)

2=4(Nfs)2 we obtain the
following equation for the evolution of the phase field:

“tfs=
f
2
11
2
(1−2fs)(Nfs)2+

1
2
fs(1−fs) N2fs−fs(1−fs)(2fs−1)2

−
f
2
TŒ
Tw
1fs(1−fs)−

1
2
(Nfs)2+

1
2
fs(fs−1) N2fs 2 (22)

Comparing this equation with Eq. (8) some differences are obvious. In
addition to the second order derivative of the phase-field the square of the
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first order derivative appears. Keeping in mind that the N2fs term stems
from the bending term in the free energy expression of the field theoretical
approach, the additional derivative implies a different bending term in the
free energy of the system: Q(fs)(Nfs)2 instead of just t(Nfs)2. (17) t is
a measure for the length scale and Q(fs) is a function to be determined. The
length scale is not explicitely defined in our model. The second difference
between Eq. (22) and Eq. (8) is the appearence of phase-field derivatives in
the temperature term. This is an effect of our growth model and the discre-
teness of the lattice but the physical background is not yet clear. In the field-
theoretical approach of the phase-field model, the phase-field f is regarded
as a mean field and the correlation length becomes very large near the
transition point, (23) whereas the correlation length in the solidification/
melting transition is small. In our lattice model the phase-field can be
locally very sharp and might include higher order terms of interaction.
A more detailed analysis of the model is under investigation.

Equations (12) and (14) do not include anisotropy effects. For com-
puting the growth of dendrites we have to account for such effects and
therefore we modify the equations. Firstly, we introduce a new (local)
lattice with directions ĩ, which might be tilted by an angle 0 [ a [ p/4
against the lattice for hydrodynamic calculations. We restrict the variation
of a because we will consider later only crystals with a four-fold symmetry.
For convenience we introduce a parameter aa=a4/p, which varies between
0 and 1. The new local lattice presents crystal structure so that crystal axes
do not need to coincide with the axes of the lattice for the lattice fluid. The
introduction of a new lattice would in principle allow us to calculate the
growth of different crystals with different orientations of their symmetry axes.

A crystal will grow normal to its local interface. In continuum phase-field
models growth direction and interface curvature are computed from the phase
field by first and second order derivatives (see, e.g., ref. 3). This type of com-
putation is not appropriate for our mesoscopic phase-field model for two
reasons: first, overnext neighbours have to be included in the algorithm, which
would slow down the computation especially on parallel platforms. Secondly
and more important, the transition region of the phase-field might be very sharp
so that derivatives could be computed only after a time-consuming smooth-
ing procedure. Therefore, we do not calculate the direction of the growth
direction but only the probability that, for every direction ĩ, the growth
occurs along ĩ. For this purpose we compute at node rFg for every direction ĩ:

G ĩ=(f(rFg+dF ĩ)−f(rFg−dF ĩ))

×(2− |f(rFg+dF ĩŒ)−f(rFg−dF ĩŒ)|)

×(2− |f(rFg+dF ĩŒ)−f(rFg)|)(2− |f(rFg−dF ĩŒ)−f(rFg)|) (23)
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ĩŒ denotes the direction perpendicular to direction ĩ and dF ĩ is a vector of
unit length in direction ĩ. The values at rFg+dF ĩ are computed by bilinear
interpolation. The growth probability in direction ĩ is given by 2G ĩ/; ĩ |G ĩ |,
if G ĩ is positive. If G ĩ is negative the crystal will melt. Obviously, if a
crystal grows in a certain direction with a certain probability, it will melt in
the opposite direction with the same probability. So we count every prob-
ability twice in the sum and the factor 2 in the numerator counteracts this.
At last we define a growth factor, which includes the local phase-field and
the anisotropy Eĩ (0 [ Eĩ [ 2):

f̃ĩ=˛
2G ĩ

; ĩ |G ĩ |
31
2
(1−f(rFg))4

2

Eĩ if G ĩ \ 0

2G ĩ
; ĩ |G ĩ |
31
2
(1+f(rFg))4

2

if G ĩ < 0
(24)

Now we have to transform f̃ĩ back on the lattice directions via f̃i=
{(1−aa) f̃ĩ+aaf̃ĩ −1} gi where we count i in the same direction as the
translation of i into ĩ. The factor gi recognizes if i is a diagonal direction
(gi=1/`2) or a horizontal/vertical one (gi=1). Equations (12) and (13)
are modified into:

K sQ l(rg, tg)QK sQ l(rg, tg)
1
8 C
i

max{− f̃i(rFg−cF
−

i)), 0} (25)

K lQ s(rg, tg)QK lQ s(rg, tg)
1
8 C
i

max{+f̃i(rFg−cF
−

i)), 0} (26)

Due to the definition in Eq. (23) a positive or negative f̃ means growth
or melting in this direction, respectively. The continuum limit for the ani-
sotropic growth model is quite more complicated, because we have to
include the probabilities Gĩ into the expansion. A detailed analysis will be
published elsewhere.

Latent heat release results in a change dTL=−(DTg/St)(df/2) of the
temperature at node rFg. Here St=cpDT/L is the Stefan number, DTg and
DT are the characteristic temperature differences of the system in lattice
and physical units, cp is the specific heat and L is the latent heat. The
minus sign recognizes the fact that heat is released in the solidification
process (df < 0) and absorbed in the melting process (df > 0). The latent
heat release acts as an extra force in the direction of u4 and enters Eq. (3)
as an additional force.

The fluid-solid interaction is represented by an empirical mesoscopic
force, FF fs=−wuF(1−f)/2, whose task is to enforce no flow in the solid
phase. To achieve this purpose the relaxation parameter w has to be chosen
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of order 1, i.e., faster than any other process. (24) Note that the force
vanishes in the liquid phase (f=1). The buoyancy force FF B, introduced in
the last section, has to be slightly modified into FF B=bTgnFg(1+f)/2. This
excludes the buoyancy force from solid regions.

4. GROWTH OF DENDRITES

We have performed a series of two-dimensional calculations for the
growth from a circular seed of radius r=3 l.u. into an undercooled melt.
We measure all parameters in lattice units (l.u.): the length scale is the
number of nodes, the time scale the number of iterations, and the tempera-
ture is defined by its value at the boundaries. The computational domain
was 200×200 l.u. and 400×400 l.u. The temperature at the boundary was
fixed to Tb=−0.001 l.u. The critical temperature was set to Tc=0.0 l.u. and
the temperature at the starting time t=0 was Tinit=−0.001 l.u. Firstly, we
test if the shape of the dendrite is independent of the tilting angle a. In one
case we set a=0, E=0.5 in diagonal directions and E=1.5 in horizontal
and vertical directions. In the second we set a=p/4, E=1.5 in diagonal
directions and E=0.5 in horizontal and vertical directions. This should give
exactly the same result and indeed we found identical phase fields. The
crystal axes can be also tilted by a more arbitrarly angle like, e.g.,
a=0.625p. As expected we still obtain the same dendrite structure. (24)

Secondly, we compare the shape and growth rate with analytical
results according to the solvability theory. (1, 25, 26) This theory assumes a
parabolic shape of the dendritic tip and treat the diffusion problem quasis-
tationary. With these assumptions a simple stability criterion for the
growth of a tip can be deduced. Furthermore, it is stated that the stability
criterion sg=2d0D/r

2
tipvtip=(r̃

2
tip ṽtip)

−1 depends only on the anisotropy
and the tip Péclet number Pe=rtipvtip/2D=r̃tip ṽtip depends only on the
undercooling. (1) Here d0=CSt/DT is the capillary length, ṽtip=vtipd0/2D
the dimensionless dendritic growth velocity, and r̃tip=rtip/d0 the dimen-
sionless tip radius. In Table I we list the Péclet numbers and values of sg

for our calculations. The anisotropy was the same in all calculations
(E=1.5 in diagonal and E=0.5 in horizontal or vertical direction). For the
same undercooling the Péclet numbers are of the same order but the
agreement is not very satisfactory. One reason for this discrepancies might
be an uncertainty in the tip radius, which was computed geometrically.
This might be not very accurate. A computation directly from the phase-
field values will be developed. sg shows even a higher variation from cal-
culation to calculation though according to the solvability theory it should
be identical, because the anisotropy is the same in all cases. Besides the
already mentioned problem of determining the tip radius, the more severe

182 Miller and Succi



Table I. Parameters and Results for Numerical Calculations of Dendritic Growth.

Calculation 1 Was Performed on a 200×200 Grid, All Others on a 400×400 Grid.

StI and StT Are the Undercoolings, Calculated from r̃tip and ṽtip with the Ivantsov and

the Temkin Model, Respectively. All Parameters Are in Lattice Units (l.u.)

No. D Tw Ts f St d vtip rtip d0 Petip sg StI StT

1 0.25 1×10−4 1×10−4 0.1 0.1 1.0 3.3×10−3 3.3 5.0×10−3 1.5×10−3 0.1 0.07 0.09

2 0.25 2×10−4 1×10−4 0.1 0.1 0.8 9.6×10−4 5.6 1.3×10−2 1.1×10−2 0.2 0.05 0.07

3 0.25 3×10−4 1×10−4 0.1 0.05 0.8 3.2×10−4 5.0 8.7×10−3 3.2×10−3 0.6 0.02 0.04

4 0.025 3×10−4 1×10−4 1.0 0.05 0.8 4.2×10−5 3.6 8.7×10−3 2.5×10−3 0.8 0.02 0.05

uncertainty is due to the Gibbs–Thomson coefficient, which is computed
using Eq. (20). A quantitative assessment of the approximation inherent to
Eq. (20) needs to be developed.

For a particular undercooling r̃tip and ṽtip have defined relation according
to the theory. For small values of r̃tip the relation depends on the theoreti-
cal approach. The important ones are the Ivantsov and the Temkin
approach. (1) Instead of calculating the (theoretical) dimensionless tip veloc-
ity from the measured dimensionless radius and undercooling we find it
more convenient to recompute the (theoretical) undercooling from the
measured dimensionless tip radius and velocity. Due to the high anisotropy
r̃tip is rather small, i.e., we are in a regime where the theoretical approaches
differ from each other. The theoretical undercooling computed with the
Temkin model is only in reasonable agreement with the value used in our
calculations. Again uncertainties in rtip and C may be a reason.

Fig. 2. Evolution of crystal shape (f=0) for different seeds and tilting angles a in the case
of diffusive transport only. The used parameters are listed in Table I under run No. 3. Isolines
(f=0) are shown for iterations 30000, 60000, 90000, 120000, and 150000. (a) Spherical seed
(”=6), a=p/4. (b) Square seed (l=40), a=p/4. (c) Square seed (l=40), a=0.
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Fig. 3. Evolution of crystal shape for different seeds and tilting angles a if buoyancy con-
vection is present (Gr=4.1×106, Pr=2). The other parameters are listed in Table I under
run No. 3. Isolines (f=0) are shown for iterations 20000, 40000, 60000, 80000, and 100000.
(a) Spherical seed (”=6), a=p/4. (b) Square seed (l=40), a=p/4. (c) Square seed (l=40),
a=0.

The structure of the growing dendrite depends on the shape of the seed
(see Fig. 2). We start from a circular seed of a diameter ”=6 l.u. and
a square of side length l=40 l.u., both positioned at the center. For the
latter we performed two calculations, one with no tilt (a=0) and one with
a tilt of a=p/4. The tilted case exhibits the same four-branch structure as
the case starting from a circular seed whereas in the untilted case eight
branches are formed—each corner acts like an own seed (see Figs. 2b
and 2c). Because there are two branches close to each other, the tip
growth velocity is a little bit smaller than in the other two cases

(a) (b) (c)

Fig. 4. Crystal shape and streamlines at iteration 50000 for different seeds and tilting angles
a if buoyancy convection is present (Gr=4.1×106, Pr=2). The other parameters are listed in
Table I under run No. 3. The flow is upstream near the crystal and downstream at the left and
right boundary. (a) Spherical seed (”=6), a=p/4. (b) Square seed (l=40), a=p/4.
(c) Square seed (l=40), a=0.
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(vtip=7.4×10−4 l.u.), but the tip radius is slightly larger (rtip=6.1 l.u.),
resulting in nearly the same Péclet number.

We also investigate the influence of buoyancy convection on the
dendrite structure. The buoyancy flow is induced by the heated crystal in
the box, the characteristic numbers are the Grashof number Gr=4.1×106

and the Prandtl number Pr=2. At the boundaries of the box we set non-
slip conditions. From Figs. 3 and 4 it can be seen that the dendrite
branches grow faster in the direction of gravity as it was observed by
Bänsch and Schmidt. (5)

5. CONCLUSIONS

The growth of dendrites can be calculated within the framework of the
lattice Boltzmann method. Hydrodynamics and heat transport is handled by
the well-established lattice Boltzmann method with a linear collision matrix
on a face-centred hypercubic lattice. The phase transition is described by a
rate equation. In order to include the crystal anisotropy a growth parameter
was defined. For the isotropic model it was shown that the continuum limit
becomes in the leading order the ordinary phase-field equation but without
the term of the phase-field bending. By this continuum limit the parameters of
the lattice Boltzmann model, like Tw, Ts, and f can be related to the param-
eters of the ordinary phase-field model, like the Gibbs–Thomson and kinetic
coefficient and the width of the transition region. Using these relationsships
the dimensionless tip velocity and radius can be computed from the measured
ones. This enables us to compare the numerical observed data with the pre-
dicted values by the solvability theory. The agreement is quite reasonable.
Nevertheless, there are several open questions. The continuum limit for the
anisotropic model has not yet been derived and it is not yet clear if the
assumption on the temperature relations (TŒ° Ts, TŒ° Tw) is applicable.

We have presented the influence of the seed on the growing dendrite
and the influence of a moderate buoyancy convection. A more systematic
study of parameter variation is required. Especially, the question arises if
side-branches will be formed. Calculations on larger lattices with stronger
buoyancy convection will be performed. Since they demand significantly
more computer power and since it is that LBM codes are very efficient
on parallel platforms (27, 28) we are going to set up a parallel version of the
current LBM.
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